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BIG DATA ANALYTICS 

 “Big data” is high-volume, velocity, and variety information assets that demand cost-effective, 

innovative forms of information processing for enhanced insight and decision making.” 

 

This definition clearly answers the “What is Big Data?” question – Big Data refers to complex and 

large data sets that have to be processed and analyzed to uncover valuable information that can 

benefit businesses and organizations. 

However, there are certain basic tenets of Big Data that will make it even simpler to answer what 

is Big Data: 

 It refers to a massive amount of data that keeps on growing exponentially with time. 

 It is so voluminous that it cannot be processed or analyzed using conventional data 

processing techniques. 

 It includes data mining, data storage, data analysis, data sharing, and data visualization. 

 The term is an all-comprehensive one including data, data frameworks, along with the tools 

and techniques used to process and analyze the data. 

 

The History of Big Data 

 

Although the concept of big data itself is relatively new, the origins of large data sets go back to 

the 1960s and '70s when the world of data was just getting started with the first data centers and 

the development of the relational database. 

Around 2005, people began to realize just how much data users generated through Facebook, 

YouTube, and other online services. Hadoop (an open-source framework created specifically to 

store and analyze big data sets) was developed that same year. NoSQL also began to gain 

popularity during this time. 

The development of open-source frameworks, such as Hadoop (and more recently, Spark) was 

essential for the growth of big data because they make big data easier to work with and cheaper to 

store. In the years since then, the volume of big data has skyrocketed. Users are still generating 

huge amounts of data—but it’s not just humans who are doing it. 

With the advent of the Internet of Things (IoT), more objects and devices are connected to the 

internet, gathering data on customer usage patterns and product performance. The emergence of 

machine learning has produced still more data. 



While big data has come far, its usefulness is only just beginning. Cloud computing has expanded 

big data possibilities even further. The cloud offers truly elastic scalability, where developers can 

simply spin up ad hoc clusters to test a subset of data. 

 

Benefits of Big Data and Data Analytics 

 

 Big data makes it possible for you to gain more complete answers because you have more 

information. 

 More complete answers mean more confidence in the data—which means a completely 

different approach to tackling problems. 

 

Types of Big Data 

Now that we are on track with what is big data, let’s have a look at the types of big data: 

a) Structured 

Structured is one of the types of big data and By structured data, we mean data that can be 

processed, stored, and retrieved in a fixed format. It refers to highly organized information that can 

be readily and seamlessly stored and accessed from a database by simple search engine algorithms. 

For instance, the employee table in a company database will be structured as the employee 

details, their job positions, their salaries, etc., will be present in an organized manner. 

 

b) Unstructured 

Unstructured data refers to the data that lacks any specific form or structure whatsoever. This 

makes it very difficult and time-consuming to process and analyze unstructured data. Email is an 

example of unstructured data. Structured and unstructured are two important types of big data. 

 

c) Semi-structured 

Semi structured is the third type of big data. Semi-structured data pertains to the data containing 

both the formats mentioned above, that is, structured and unstructured data. To be precise, it refers 

to the data that although has not been classified under a particular repository (database), yet 

contains vital information or tags that segregate individual elements within the data. Thus we come 

to the end of types of data. 

 

Characteristics of Big Data 

 

Back in 2001, Gartner analyst Doug Laney listed the 3 ‘V’s of Big Data – Variety, Velocity, and 



Volume. Let’s discuss the characteristics of big data. 

These characteristics, isolated, are enough to know what big data is. Let’s look at them in depth: 

a) Variety 

Variety of Big Data refers to structured, unstructured, and semi-structured data that is gathered 

from multiple sources. While in the past, data could only be collected from spreadsheets and 

databases, today data comes in an array of forms such as emails, PDFs, photos, videos, audios, SM 

posts, and so much more. Variety is one of the important characteristics of big data. 

 

Velocity 

Velocity essentially refers to the speed at which data is being created in real-time. In a broader 

prospect, it comprises the rate of change, linking of incoming data sets at varying speeds, and 

activity bursts. 

b) Volume 

Volume is one of the characteristics of big data. We already know that Big Data indicates huge 

‘volumes’ of data that is being generated on a daily basis from various sources like social media 

platforms, business processes, machines, networks, human interactions, etc. Such a large amount 

of data is stored in data warehouses. Thus comes to the end of characteristics of big data. 

 

Why is Big Data Important? 

The importance of big data does not revolve around how much data a company has but how a 

company utilizes the collected data. Every company uses data in its own way; the more efficiently 

a company uses its data, the more potential it has to grow. The company can take data from any 

source and analyze it to find answers which will enable: 

 

1. Cost Savings: Some tools of Big Data like Hadoop and Cloud-Based Analytics can bring 

cost advantages to business when large amounts of data are to be stored and these tools 

also help in identifying more efficient ways of doing business. 

2. Time Reductions: The high speed of tools like Hadoop and in-memory analytics can 

easily identify new sources of data which helps businesses analyzing data immediately 

and make quick decisions based on the learning. 

3. Understand the market conditions: By analyzing big data you can get a better 

understanding of current market conditions. For example, by analyzing customers’ 

purchasing behaviors, a company can find out the products that are sold the most and 

produce products according to this trend. By this, it can get ahead of its competitors. 

https://hadoop.apache.org/


4. Control online reputation: Big data tools can do sentiment analysis. Therefore, you 

can get feedback about who is saying what about your company. If you want to monitor 

and improve the online presence of your business, then, big data tools can help in all 

this. 

5. Using Big Data Analytics to Boost Customer Acquisition and Retention 

The customer is the most important asset any business depends on. There is no single 

business that can claim success without first having to establish a solid customer base. 

However, even with a customer base, a business cannot afford to disregard the high 

competition it faces. If a business is slow to learn what customers are looking for, then 

it is very easy to begin offering poor quality products. In the end, loss of clientele will 

result, and this creates an adverse overall effect on business success. The use of big data 

allows businesses to observe various customer related patterns and trends. Observing 

customer behavior is important to trigger loyalty. 

6. Using Big Data Analytics to Solve Advertisers Problem and Offer Marketing 

Insights 

 

Big data analytics can help change all business operations. This includes the ability to 

match customer expectation, changing company’s product line and of course ensuring 

that the marketing campaigns are powerful. 

7. Big Data Analytics As a Driver of Innovations and Product Development 

Another huge advantage of big data is the ability to help companies innovate and 

redevelop their products. 

 

Business Intelligence vs Big Data 

 

Although Big Data and Business Intelligence are two technologies used to analyze data to help 

companies in the decision-making process, there are differences between both of them. They differ 

in the way they work as much as in the type of data they analyze. 

 

Traditional BI methodology is based on the principle of grouping all business data into a central 

server. Typically, this data is analyzed in offline mode, after storing the information in an 

environment called Data Warehouse. The data is structured in a conventional relational database 

with an additional set of indexes and forms of access to the tables (multidimensional cubes). 

 

A Big Data solution differs in many aspects to BI to use. These are the main differences between 



Big Data and Business Intelligence: 

 

1. In a Big Data environment, information is stored on a distributed file system, rather than 

on a central server. It is a much safer and more flexible space. 

2. Big Data solutions carry the processing functions to the data, rather than the data to the 

functions. As the analysis is centered on the information, it´s easier to handle larger 

amounts of information in a more agile way. 

3. Big Data can analyze data in different formats, both structured and unstructured. The 

volume of unstructured data (those not stored in a traditional database) is growing at levels 

much higher than the structured data. Nevertheless, its analysis carries different challenges. 

Big Data solutions solve them by allowing a global analysis of various sources of 

information. 

4. Data processed by Big Data solutions can be historical or come from real-time sources. 

Thus, companies can make decisions that affect their business in an agile and efficient way. 

5. Big Data technology uses parallel mass processing (MPP) concepts, which improves the 

speed of analysis. With MPP many instructions are executed simultaneously, and since the 

various jobs are divided into several parallel execution parts, at the end the overall results 

are reunited and presented. This allows you to analyze large volumes of information 

quickly. 

 

Big Data vs Data Warehouse 

Big Data has become the reality of doing business for organizations today. There is a boom in the 

amount of structured as well as raw data that floods every organization daily. If this data is 

managed well, it can lead to powerful insights and quality decision making. 

 

Big data analytics is the process of examining large data sets containing a variety of data types to 

discover some knowledge in databases, to identify interesting patterns and establish relationships 

to solve problems, market trends, customer preferences, and other useful information. Companies 

and businesses that implement Big Data Analytics often reap several business benefits. Companies 

implement Big Data Analytics because they want to make more informed business decisions. 

 

A data warehouse (DW) is a collection of corporate information and data derived from operational 

systems and external data sources. A data warehouse is designed to support business decisions by 

allowing data consolidation, analysis and reporting at different aggregate levels. Data is populated 

into the Data Warehouse through the processes of extraction, transformation and loading (ETL 



tools). Data analysis tools, such as business intelligence software, access the data within the 

warehouse. 

 

Hadoop Environment Big Data Analytics 

 

Hadoop is changing the perception of handling Big Data especially the unstructured data. Let’s 

know how Apache Hadoop software library, which is a framework, plays a vital role in handling 

Big Data. Apache Hadoop enables surplus data to be streamlined for any distributed processing 

system across clusters of computers using simple programming models. It truly is made to scale 

up from single servers to a large number of machines, each and every offering local computation, 

and storage space. Instead of depending on hardware to provide high-availability, the library itself 

is built to detect and handle breakdowns at the application layer, so providing an extremely 

available service along with a cluster of computers, as both versions might be vulnerable to failures. 

 

Hadoop Community Package Consists of 

 File system and OS level abstractions 

 A MapReduce engine (either MapReduce or YARN) 

 The Hadoop Distributed File System (HDFS) 

 Java ARchive (JAR) files 

 Scripts needed to start Hadoop 

 Source code, documentation and a contribution section 

 

Activities performed on Big Data 

 

 Store – Big data need to be collected in a seamless repository, and it is not necessary to 

store in a single physical database. 

 Process – The process becomes more tedious than traditional one in terms of cleansing, 

enriching, calculating, transforming, and running algorithms. 

 Access – There is no business sense of it at all when the data cannot be searched, retrieved 

easily, and can be virtually showcased along the business lines. 

 

Classification of analytics 

Descriptive analytics 

Descriptive analytics is a statistical method that is used to search and summarize historical data in 

http://hadoop.apache.org/


order to identify patterns or meaning. 

 

Data aggregation and data mining are two techniques used in descriptive analytics to discover 

historical data. Data is first gathered and sorted by data aggregation in order to make the datasets 

more manageable by analysts. 

 

Data mining describes the next step of the analysis and involves a search of the data to identify 

patterns and meaning. Identified patterns are analyzed to discover the specific ways that learners 

interacted with the learning content and within the learning environment. 

 

Advantages: 

 

 Quickly and easily report on the Return on Investment (ROI) by showing how performance 

achieved business or target goals. 

 Identify gaps and performance issues early - before they become problems. 

 Identify specific learners who require additional support, regardless of how many students 

or employees there are. 

 Identify successful learners in order to offer positive feedback or additional resources. 

 Analyze the value and impact of course design and learning resources. 

Predictive analytics 

 

Predictive Analytics is a statistical method that utilizes algorithms and machine learning to identify 

trends in data and predict future behaviors 

The software for predictive analytics has moved beyond the realm of statisticians and is becoming 

more affordable and accessible for different markets and industries, including the field of learning 

& development. 

 

 

 



For online learning specifically, predictive analytics is often found incorporated in the Learning 

Management System (LMS), but can also be purchased separately as specialized software. 

 

For the learner, predictive forecasting could be as simple as a dashboard located on the main screen 

after logging in to access a course. Analyzing data from past and current progress, visual indicators 

in the dashboard could be provided to signal whether the employee was on track with training 

requirements. 

 

Advantages: 

 

 Personalize the training needs of employees by identifying their gaps, strengths, and 

weaknesses; specific learning resources and training can be offered to support individual 

needs. 

 Retain Talent by tracking and understanding employee career progression and forecasting 

what skills and learning resources would best benefit their career paths. Knowing what skills 

employees need also benefits the design of future training. 

 Support employees who may be falling behind or not reaching their potential by offering 

intervention support before their performance puts them at risk. 

 Simplified reporting and visuals that keep everyone updated when predictive forecasting 

is required. 

 

 

Prescriptive analytics 

Prescriptive analytics is a statistical method used to generate recommendations and make decisions 

based on the computational findings of algorithmic models. 

 

Generating automated decisions or recommendations requires specific and unique algorithmic 

models and clear direction from those utilizing the analytical technique. A recommendation cannot 

be generated without knowing what to look for or what problem is desired to be solved. In this 

way, prescriptive analytics begins with a problem. 

 

Example 

A Training Manager uses predictive analysis to discover that most learners without a particular 



skill will not complete the newly launched course. What could be done? Now prescriptive analytics 

can be of assistance on the matter and help determine options for action. Perhaps an algorithm can 

detect the learners who require that new course, but lack that particular skill, and send an automated 

recommendation that they take an additional training resource to acquire the missing skill. 

 

The accuracy of a generated decision or recommendation, however, is only as good as the quality 

of data and the algorithmic models developed. What may work for one company’s training needs 

may not make sense when put into practice in another company’s training department. Models are 

generally recommended to be tailored for each unique situation and need. 

 

Descriptive vs Predictive vs Prescriptive Analytics 

 

Descriptive Analytics is focused solely on historical data. 

 

You can think of Predictive Analytics as then using this historical data to develop statistical models 

that will then forecast about future possibilities. 

 

Prescriptive Analytics takes Predictive Analytics a step further and takes the possible forecasted 

outcomes and predicts consequences for these outcomes. 

 

What Big Data Analytics Challenges? 

1. Need for Synchronization Across Disparate Data Sources 

 

As data sets are becoming bigger and more diverse, there is a big challenge to incorporate them 

into an analytical platform. If this is overlooked, it will create gaps and lead to wrong messages 

and insights. 

2. Acute Shortage Of Professionals Who Understand Big Data Analysis 

The analysis of data is important to make this voluminous amount of data being produced in every 

minute, useful. With the exponential rise of data, a huge demand for big data scientists and Big 

Data analysts has been created in the market. It is important for business organizations to hire a 

data scientist having skills that are varied as the job of a data scientist is multidisciplinary. Another 

major challenge faced by businesses is the shortage of professionals who understand Big Data 

analysis. There is a sharp shortage of data scientists in comparison to the massive amount of data 

being produced. 

 



 

3. Getting Meaningful Insights Through The Use Of Big Data Analytics 

 

It is imperative for business organizations to gain important insights from Big Data analytics, and 

also it is important that only the relevant department has access to this information. A big challenge 

faced by the companies in the Big Data analytics is mending this wide gap in an effective manner. 

 

4. Getting Voluminous Data Into The Big Data Platform 

 

It is hardly surprising that data is growing with every passing day. This simply indicates that 

business organizations need to handle a large amount of data on daily basis. The amount and 

variety of data available these days can overwhelm any data engineer and that is why it is 

considered vital to make data accessibility easy and convenient for brand owners and managers. 

 

 

5. Uncertainty Of Data Management Landscape 

 

With the rise of Big Data, new technologies and companies are being developed every day. 

However, a big challenge faced by the companies in the Big Data analytics is to find out which 

technology will be best suited to them without the introduction of new problems and potential 

risks. 

 

6. Data Storage and Quality 

 

Business organizations are growing at a rapid pace. With the tremendous growth of the companies 

and large business organizations, increases the amount of data produced. The storage of this 

massive amount of data is becoming a real challenge for everyone. Popular data storage options 

like data lakes/ warehouses are commonly used to gather and store large quantities of unstructured 

and structured data in its native format. The real problem arises when a data lakes/ warehouse try 

to combine unstructured and inconsistent data from diverse sources, it encounters errors. Missing 

data, inconsistent data, logic conflicts, and duplicates data all result in data quality challenges. 

 

7. Security and Privacy Of Data 

 

Once business enterprises discover how to use Big Data, it brings them a wide range of possibilities 



and opportunities. However, it also involves the potential risks associated with big data when it 

comes to the privacy and the security of the data. The Big Data tools used for analysis and storage 

utilizes the data disparate sources. This eventually leads to a high risk of exposure of the data, 

making it vulnerable. Thus, the rise of voluminous amount of data increases privacy and security 

concerns. 

 

Terminologies Used In Big Data Environments 

 As-a-service infrastructure 

Data-as-a-service, software-as-a-service, platform-as-a-service – all refer to the idea that rather 

than selling data, licenses to use data, or platforms for running Big Data technology, it can be 

provided “as a service”, rather than as a product. This reduces the upfront capital investment 

necessary for customers to begin putting their data, or platforms, to work for them, as the provider 

bears all of the costs of setting up and hosting the infrastructure. As a customer, as-a-service 

infrastructure can greatly reduce the initial cost and setup time of getting Big Data initiatives up 

and running. 

 

 Data science 

Data science is the professional field that deals with turning data into value such as new insights or 

predictive models. It brings together expertise from fields including statistics, mathematics, 

computer science, communication as well as domain expertise such as business knowledge. Data 

scientist has recently been voted the No 1 job in the U.S., based on current demand and salary and 

career opportunities. 

 Data mining 

Data mining is the process of discovering insights from data. In terms of Big Data, because it is so 

large, this is generally done by computational methods in an automated way using methods such 

as decision trees, clustering analysis and, most recently, machine learning. This can be thought of 

as using the brute mathematical power of computers to spot patterns in data which would not be 

visible to the human eye due to the complexity of the dataset. 

 Hadoop 

Hadoop is a framework for Big Data computing which has been released into the public domain as 

open source software, and so can freely be used by anyone. It consists of a number of modules all 

tailored for a different vital step of the Big Data process – from file storage (Hadoop File System 



– HDFS) to database (HBase) to carrying out data operations (Hadoop MapReduce – see below). 

It has become so popular due to its power and flexibility that it has developed its own industry of 

retailers (selling tailored versions), support service providers and consultants. 

 Predictive modelling 

At its simplest, this is predicting what will happen next based on data about what has happened 

previously. In the Big Data age, because there is more data around than ever before, predictions 

are becoming more and more accurate. Predictive modelling is a core component of most Big Data 

initiatives, which are formulated to help us choose the course of action which will lead to the most 

desirable outcome. The speed of modern computers and the volume of data available means that 

predictions can be made based on a huge number of variables, allowing an ever-increasing number 

of variables to be assessed for the probability that it will lead to success. 

 MapReduce 

MapReduce is a computing procedure for working with large datasets, which was devised due to 

difficulty of reading and analysing really Big Data using conventional computing methodologies. 

As its name suggest, it consists of two procedures – mapping (sorting information into the format 

needed for analysis – i.e. sorting a list of people according to their age) and reducing (performing 

an operation, such checking the age of everyone in the dataset to see who is over 21). 

 

 NoSQL 

NoSQL refers to a database format designed to hold more than data which is simply arranged into 

tables, rows, and columns, as is the case in a conventional relational database. This database format 

has proven very popular in Big Data applications because Big Data is often messy, unstructured 

and does not easily fit into traditional database frameworks. 

 Python 

Python is a programming language which has become very popular in the Big Data space due to 

its ability to work very well with large, unstructured datasets (see Part II for the difference between 

structured and unstructured data). It is considered to be easier to learn for a data science beginner 

than other languages such as R (see also Part II) and more flexible. 

 R Programming 

R is another programming language commonly used in Big Data, and can be thought of as more 

specialized than Python, being geared towards statistics. Its strength lies in its powerful handling 

of structured data. Like Python, it has an active community of users who are constantly expanding 



and adding to its capabilities by creating new libraries and extensions. 

 Recommendation engine 

A recommendation engine is basically an algorithm, or collection of algorithms, designed to match 

an entity (for example, a customer) with something they are looking for. Recommendation engines 

used by the likes of Netflix or Amazon heavily rely on Big Data technology to gain an overview 

of their customers and, using predictive modelling, match them with products to buy or content to 

consume. The economic incentives offered by recommendation engines has been a driving force 

behind a lot of commercial Big Data initiatives and developments over the last decade. 

 Real-time 

Real-time means “as it happens” and in Big Data refers to a system or process which is able to 

give data-driven insights based on what is happening at the present moment. Recent years have 

seen a large push for the development of systems capable of processing and offering insights in 

real-time (or near-real-time), and advances in computing power as well as development of 

techniques such as machine learning have made it a reality in many applications today. 

 Reporting 

The crucial “last step” of many Big Data initiative involves getting the right information to the 

people who need it to make decisions, at the right time. When this step is automated, analytics is 

applied to the insights themselves to ensure that they are communicated in a way that they will be 

understood and easy to act on. This will usually involve creating multiple reports based on the 

same data or insights but each intended for a different audience (for example, in-depth technical 

analysis for engineers, and an overview of the impact on the bottom line for c-level executives). 

 Spark 

 

Spark is another open source framework like Hadoop but more recently developed and more suited 

to handling cutting-edge Big Data tasks involving real time analytics and machine learning. Unlike 

Hadoop it does not include its own file system, though it is designed to work with Hadoop’s HDFS 

or a number of other options. However, for certain data related processes it is able to calculate at 

over 100 times the speed of Hadoop, thanks to its in-memory processing capability. This means it 

is becoming an increasingly popular choice for projects involving deep learning, neural networks 

and other compute-intensive tasks. 

 Structured Data 

Structured data is simply data that can be arranged neatly into charts and tables consisting of rows, 



columns or multi-dimensioned matrixes. This is traditionally the way that computers have stored 

data, and information in this format can easily and simply be processed and mined for insights. 

Data gathered from machines is often a good example of structured data, where various data points 

– speed, temperature, rate of failure, RPM etc. – can be neatly recorded and tabulated for analysis. 

 Unstructured Data 

Unstructured data is any data which cannot easily be put into conventional charts and tables. This 

can include video data, pictures, recorded sounds, text written in human languages and a great deal 

more. This data has traditionally been far harder to draw insight from using computers which were 

generally designed to read and analyze structured information. However, since it has become 

apparent that a huge amount of value can be locked away in this unstructured data, great efforts 

have been made to create applications which are capable of understanding unstructured data – for 

example visual recognition and natural language processing. 

 Visualization 

Humans find it very hard to understand and draw insights from large amounts of text or numerical 

data – we can do it, but it takes time, and our concentration and attention is limited. For this reason 

effort has been made to develop computer applications capable of rendering information in a visual 

form – charts and graphics which highlight the most important insights which have resulted from 

our Big Data projects. A subfield of reporting (see above), visualizing is now often an automated 

process, with visualizations customized by algorithm to be understandable to the people who need 

to act or take decisions based on them. 

 

Basic availability, Soft state and Eventual consistency 

 

Basic availability implies continuous system availability despite network failures and tolerance 

to temporary inconsistency. 

Soft state refers to state change without input which is required for eventual consistency. 

Eventual consistency means that if no further updates are made to a given updated database item 

for long enough period of time , all users will see the same value for the updated item. 

Top Analytics Tools 

 

* R is a language for statistical computing and graphics. It also used for big data analysis. It 

provides a wide variety of statistical tests. 

https://www.r-project.org/


 

Features: 

 

 Effective data handling and storage facility, 

 It provides a suite of operators for calculations on arrays, in particular, matrices, 

 It provides coherent, integrated collection of big data tools for data analysis 

 It provides graphical facilities for data analysis which display either on-screen or on 

hardcopy 

 

* Apache Spark is a powerful open source big data analytics tool. It offers over 80 high-level 

operators that make it easy to build parallel apps. It is used at a wide range of organizations to 

process large datasets. 

Features: 

 

 It helps to run an application in Hadoop cluster, up to 100 times faster in memory, and ten 

times faster on disk 

 It offers lighting Fast Processing 

 Support for Sophisticated Analytics 

 Ability to Integrate with Hadoop and Existing Hadoop Data 

 

* Plotly is an analytics tool that lets users create charts and dashboards to share online. 

 

Features: 

 

 Easily turn any data into eye-catching and informative graphics 

 It provides audited industries with fine-grained information on data provenance 

 Plotly offers unlimited public file hosting through its free community plan 

 

* Lumify is a big data fusion, analysis, and visualization platform. It helps users to discover 

connections and explore relationships in their data via a suite of analytic options. 

 

Features: 

 

 It provides both 2D and 3D graph visualizations with a variety of automatic layouts 

https://spark.apache.org/
https://plot.ly/
http://www.altamiracorp.com/index.php/lumify/


 It provides a variety of options for analyzing the links between entities on the graph 

 It comes with specific ingest processing and interface elements for textual content, images, 

and videos 

 It spaces feature allows you to organize work into a set of projects, or workspaces 

 It is built on proven, scalable big data technologies 

 

* IBM SPSS Modeler is a predictive big data analytics platform. It offers predictive models and 

delivers to individuals, groups, systems and the enterprise. It has a range of advanced algorithms 

and analysis techniques. 

 

Features: 

 

 Discover insights and solve problems faster by analyzing structured and unstructured data 

 Use an intuitive interface for everyone to learn 

 You can select from on-premises, cloud and hybrid deployment options 

 Quickly choose the best performing algorithm based on model performance 

 

* MongoDB is a NoSQL, document-oriented database written in C, C++, and JavaScript. It is free 

to use and is an open source tool that supports multiple operating systems including Windows 

Vista ( and later versions), OS X (10.7 and later versions), Linux, Solaris, and FreeBSD. 

 

Its main features include Aggregation, Adhoc-queries, Uses BSON format, Sharding, Indexing, 

Replication, Server-side execution of javascript, Schemaless, Capped collection, MongoDB 

management service (MMS), load balancing and file storage. 

 

Features: 

 

 Easy to learn. 

 Provides support for multiple technologies and platforms. 

 No hiccups in installation and maintenance. 

 Reliable and low cost. 

 

 

 

https://www.ibm.com/us-en/marketplace/spss-modeler


NoSQL 

 

NoSQL is a non-relational DMS, that does not require a fixed schema, avoids joins, and is easy to 

scale. NoSQL database is used for distributed data stores with humongous data storage needs. 

NoSQL is used for Big data and real-time web apps. For example companies like Twitter, 

Facebook, Google that collect terabytes of user data every single day. 

 

SQL 

Structured Query language (SQL) pronounced as "S-Q-L" or sometimes as "See-Quel" is the 

standard language for dealing with Relational Databases. A relational database defines 

relationships in the form of tables. 

SQL programming can be effectively used to insert, search, update, delete database records. 

 

Comparison of SQL and NoSQL 

 

Parameter SQL NOSQL 

Definition SQL databases are primarily called 

RDBMS or Relational Databases 

NoSQL databases are primarily called as Non- 

relational or distributed database 

Design for Traditional RDBMS uses SQL 

syntax and queries to analyze and 

get the data for further insights. 

They are used for OLAP systems. 

NoSQL database system consists of various 

kind of database technologies. These databases 

were developed in response to the demands 

presented for the development of the modern 

application. 

Query 

Language 

Structured query language (SQL) No declarative query language 

Type SQL databases are table based 

databases 

NoSQL databases can be document based, key- 

value pairs, graph databases 

Schema SQL databases have a predefined 

schema 

NoSQL databases use dynamic schema for 

unstructured data. 

Ability to scale SQL databases are vertically 

scalable 

NoSQL databases are horizontally scalable 

Examples Oracle, Postgres, and MS-SQL. MongoDB, Redis, , Neo4j, Cassandra, Hbase. 

Best suited for An ideal choice for the complex 

query intensive environment. 

It is not good fit complex queries. 



Hierarchical 

data storage 

SQL databases are not suitable for 

hierarchical data storage. 

More suitable for the hierarchical data store as it 

supports key-value pair method. 

Variations One type with minor variations. Many different types which include key-value 

stores, document databases, and graph 

databases. 

 

Development 

Year 

It was developed in the 1970s to 

deal with issues with flat file 

storage 

Developed in the late 2000s to overcome issues 

and limitations of SQL databases. 

Open-source A mix of open-source like Postgres 

& MySQL, and commercial like 

Oracle Database. 

Open-source 

Consistency It should be configured for strong 

consistency. 

It depends on DBMS as some offers strong 

consistency like MongoDB, whereas others 

offer only offers eventual consistency, like 

Cassandra. 

Best Used for RDBMS database is the right 

option for solving ACID problems. 

NoSQL   is   a   best used for solving data 

availability problems 

Importance It should be used when data validity 

is super important 

Use when it's more important to have fast data 

than correct data 

Best option When you need to support dynamic 

queries 

Use when you need to scale based on changing 

requirements 

Hardware Specialized DB hardware (Oracle 

Exadata, etc.) 

Commodity hardware 

Network Highly available network 

(Infiniband, Fabric Path, etc.) 

Commodity network (Ethernet, etc.) 

Storage Type Highly Available Storage (SAN, 

RAID, etc.) 

Commodity drives storage (standard HDDs, 

JBOD) 

Best features Cross-platform support, Secure and 

free 

Easy to use, High performance, and Flexible 

tool. 

Top 

Companies 

Using 

Hootsuite, CircleCI, Gauges Airbnb, Uber, Kickstarter 



Average salary The average salary for any 

professional   SQL   Developer  is 

$84,328 per year in the U.S.A. 

The average salary for "NoSQL developer" 

ranges from approximately $72,174 per year 

ACID vs. 

BASE Model 

ACID( Atomicity, Consistency, 

Isolation, and Durability) is a 

standard for RDBMS 

Base ( Basically Available, Soft state, 

Eventually Consistent) is a model of many 

NoSQL systems 

 

RDBMS Versus Hadoop 

 

 

Distributed Computing Challenges 

Designing a distributed system does not come  as  easy  and  straight  forward.  A number   of 

challenges need to be overcome in order to get the ideal system. The major challenges in distributed 

systems are listed below: 



 

1. Heterogeneity: 

The Internet enables users to access services and run applications over a heterogeneous collection 

of computers and networks. Heterogeneity (that is, variety and difference) applies to all of the 

following: 

o Hardware devices: computers, tablets, mobile phones, embedded devices, etc. 

o Operating System: Ms Windows, Linux, Mac, Unix, etc. 

o Network: Local network, the Internet, wireless network, satellite links, etc. 

o Programming languages: Java, C/C++, Python, PHP, etc. 

o Different roles of software developers, designers, system managers 

Different programming languages use different representations for characters and data structures 

such as arrays and records. These differences must be addressed if programs written in different 

languages are to be able to communicate with one another. Programs written by different 

developers cannot communicate with one another unless they use common standards, for example, 

for  network   communication   and   the 

representation of primitive data items and data structures in messages. For this to happen, standards 

need    to    be    agreed    and    adopted    –    as    have    the    Internet    protocols. Middleware: 

The term middleware applies to a software layer that provides a programming abstraction as well 

as masking the heterogeneity of the underlying networks, hardware, operating systems and 

programming languages. Most middleware is implemented over the Internet protocols, which 



themselves mask the differences of the underlying networks, but all middleware deals with 

 the differences in operating  systems and   

      hardware 

Heterogeneity and mobile code: The term mobile code is used to refer to program code that can 

be transferred from one computer to another and run at the destination – Java applets are an 

example. Code suitable for running on one computer is not necessarily suitable for running on 

another because executable programs are normally specific both to the instruction set and to the 

host operating system. 

2. Transparency: 

Transparency is defined as the concealment from the user and the application programmer of the 

separation of components in a distributed system, so that the system is perceived as a whole rather 

than as a collection of independent components. In other words, distributed systems designers must 

hide the complexity of the systems as much as they can. Some terms of transparency in distributed 

systems      are: 

Access Hide differences in data representation and how a resource is accessed 

Location  Hide where a resource is located 

Migration  Hide    that    a    resource    may    move    to    another    location Relocation 

Hide that a  resource  may  be  moved  to  another  location  while  in  use Replication   Hide    that    

a    resource    may    be    copied    in    several    places Concurrency  Hide  that  a  resource  may   

be   shared   by   several   competitive   users  Failure Hide       the       failure       and       recovery       

of       a       resource Persistence Hide whether a (software) resource is in memory or a disk 

3. Openness 

The openness of a computer system is the characteristic that determines whether the system can 

be extended and re-implemented in various ways. The openness of distributed systems is 

determined primarily by the degree to which new resource-sharing services can be added and be  

made available for use by a variety of client programs. If the well-defined interfaces for a system 

are published, it is easier for developers to add new features or replace sub-systems in the future. 

Example: Twitter and Facebook have API that allows developers to develop their own software 

interactively. 

4. Concurrency 

Both services and applications provide resources that can be shared by clients in a distributed 

system. There is therefore a possibility that several clients will attempt to access a shared resource 

at the same time. For example, a data structure that records bids for an auction may be accessed 



very frequently when it gets close to the deadline time. For an object to be safe in a concurrent 

environment, its operations must be synchronized in such a way that its data remains consistent. 

This can be achieved by standard techniques such as semaphores, which are used in most operating 

systems. 

5. Security 

Many of the information resources that are made available and maintained in distributed systems 

have a high intrinsic value to their users. Their security is therefore of considerable importance. 

Security for information  resources  has  three components: 

confidentiality (protection  against disclosure to   unauthorized  individuals) 

integrity (protection  against   alteration   or   corruption), 

availability for the authorized (protection against interference with the means to access the 

resources). 

6. Scalability 

Distributed systems must be scalable as the number of user increases. The scalability is defined by 

B. Clifford Neumann as 

A system is said to be scalable if it can handle the addition of users and resources without suffering 

a noticeable loss of performance or increase in administrative complexity 

Scalability has 3 dimensions: 

o Size 

o Number of users and resources to be processed. Problem associated is overloading 

o Geography 

o Distance between users and resources. Problem associated is communication reliability 

o Administration 

o As the size of distributed systems increases, many of the system needs to be controlled. 

Problem associated is administrative mess 

7. Failure Handling 

Computer systems sometimes fail. When faults occur in hardware or software, programs may 

produce incorrect results or may stop before they have completed the intended computation. The 

handling of failures is particularly difficult. 

Hadoop Overview 

 



Hadoop is an Apache open source framework written in java that allows distributed processing of 

large datasets across clusters of computers using simple programming models. The Hadoop 

framework      application      works      in     an       environment       that       provides distributed 

storage and computation across clusters of computers. Hadoop is designed to scale up from single 

server to thousands of machines, each offering local computation and storage. 

 

Hadoop Architecture 

 

At its core, Hadoop has two major layers namely − 

 

 Processing/Computation layer (MapReduce), and 

 Storage layer (Hadoop Distributed File System). 

 

 

MapReduce 

 

MapReduce is a parallel programming model for writing distributed applications devised at 

Google for efficient processing of large amounts of data (multi-terabyte data-sets), on large 

clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner. The 

MapReduce program runs on Hadoop which is an Apache open-source framework. 

 

Hadoop Distributed File System 



 

The Hadoop Distributed File System (HDFS) is based on the Google File System (GFS) and 

provides a distributed file system that is designed to run on commodity hardware. It has many 

similarities with existing distributed file systems. However, the differences from other distributed 

file systems are significant. It is highly fault-tolerant and is designed to be deployed on low-cost 

hardware. It provides high throughput access to application data and is suitable for applications 

having large datasets. 

Apart from the above-mentioned two core components, Hadoop framework also includes the 

following two modules − 

 Hadoop Common − These are Java libraries and utilities required by other Hadoop 

modules. 

 Hadoop YARN − This is a framework for job scheduling and cluster resource 

management. 

 

How Does Hadoop Work? 

 

It is quite expensive to build bigger servers with heavy configurations that handle large scale 

processing, but as an alternative, you can tie together many commodity computers with single- 

CPU, as a single functional distributed system and practically, the clustered machines can read 

the dataset in parallel and provide a much higher throughput. Moreover, it is cheaper than one 

high-end server. So this is the first motivational factor behind using Hadoop that it runs across 

clustered and low-cost machines. 

Hadoop runs code across a cluster of computers. This process includes the following core tasks 

that Hadoop performs − 

 Data is initially divided into directories and files. Files are divided into uniform sized 

blocks of 128M and 64M (preferably 128M). 

 These files are then distributed across various cluster nodes for further processing. 

 HDFS, being on top of the local file system, supervises the processing. 

 Blocks are replicated for handling hardware failure. 

 Checking that the code was executed successfully. 

 Performing the sort that takes place between the map and reduce stages. 



 Sending the sorted data to a certain computer. 

 Writing the debugging logs for each job. 

 

Advantages of Hadoop 

 

 Hadoop framework allows the user to quickly write and test distributed systems. It is 

efficient, and it automatic distributes the data and work across the machines and in turn, 

utilizes the underlying parallelism of the CPU cores. 

 Hadoop does not rely on hardware to provide fault-tolerance and high availability (FTHA), 

rather Hadoop library itself has been designed to detect and handle failures at the 

application layer. 

 Servers can be added or removed from the cluster dynamically and Hadoop continues to 

operate without interruption. 

 Another big advantage of Hadoop is that apart from being open source, it is compatible on 

all the platforms since it is Java based. 

Processing Data with Hadoop - Managing Resources and Applications with Hadoop YARN 

 

Yarn divides the task on resource management and job scheduling/monitoring into separate 

daemons. There is one Resource Manager and per-application Application Master. An application 

can be either a job or a DAG of jobs. 

The Resource Manger have two components – Scheduler and Application Manager. 

 

The scheduler is a pure scheduler i.e. it does not track the status of running application. It only 

allocates resources to various competing applications. Also, it does not restart the job after failure 

due to hardware or application failure. The scheduler allocates the resources based on an abstract 

notion of a container. A container is nothing but a fraction of resources like CPU, memory, disk, 

network etc. 

Following are the tasks of Application Manager: - 

 

 Accepts submission of jobs by client. 

 Negotiates first container for specific Application Master. 

 Restarts the container after application failure. 

Below are the responsibilities of Application Master 

https://data-flair.training/blogs/hadoop-yarn-tutorial/
https://data-flair.training/blogs/hadoop-schedulers/


 

 Negotiates containers from Scheduler 

 Tracking container status and monitoring its progress. 

Yarn supports the concept of Resource Reservation via Reservation System. In this, a user can fix 

a number of resources for execution of a particular job over time and temporal constraints. The 

Reservation System makes sure that the resources are available to the job until its completion. It 

also performs admission control for reservation. 

 

Yarn can scale beyond a few thousand nodes via Yarn Federation. YARN Federation allows to 

wire multiple sub-cluster into the single massive cluster. We can use many independent clusters 

together for a single large job. It can be used to achieve a large scale system. 

 

Let us summarize how Hadoop works step by step: 

 Input data is broken into blocks of size 128 Mb and then blocks are moved to different nodes. 

 Once all the blocks of the data are stored on data-nodes, the user can process the data. 

 Resource Manager then schedules the program (submitted by the user) on individual nodes. 

 Once all the nodes process the data, the output is written back to HDFS. 

 

Interacting with Hadoop Ecosystem 

Hadoop Ecosystem Hadoop has an ecosystem that has evolved from its three core components 

processing, resource management, and storage. In this topic, you will learn the components of the 

Hadoop ecosystem and how they perform their roles during Big Data processing. The 

Hadoop ecosystem is continuously growing to meet the needs of Big Data. It comprises the 

following twelve components: 

 

 HDFS(Hadoop Distributed file system) 

 HBase 

 Sqoop 

 Flume 

 Spark 

 Hadoop MapReduce 

 Pig 

 Impala 

https://hortonworks.com/apache/hadoop/


 Hive 

 Cloudera Search 

 Oozie 

 Hue. 

 

Let us understand the role of each component of the Hadoop ecosystem. 

 

Components of Hadoop Ecosystem 

 

Let us start with the first component HDFS of Hadoop Ecosystem. 

 

HDFS (HADOOP DISTRIBUTED FILE SYSTEM) 

 

 HDFS is a storage layer for Hadoop. 

 HDFS is suitable for distributed storage and processing, that is, while the data is being 

stored, it first gets distributed and then it is processed. 

 HDFS provides Streaming access to file system data. 

 HDFS provides file permission and authentication. 

 HDFS uses a command line interface to interact with Hadoop. 

 

So what stores data in HDFS? It is the HBase which stores data in HDFS. 

 

HBase 

 HBase is a NoSQL database or non-relational database. 

 HBase is important and mainly used when you need random, real-time, read, or write access 

to your Big Data. 

 It provides support to a high volume of data and high throughput. 

 In an HBase, a table can have thousands of columns. 

 



INTRODUCTION TO MONGODB AND MAPREDUCE PROGRAMMING 

 

MongoDB is a cross-platform, document-oriented database that provides, high performance, high 

availability, and easy scalability. MongoDB works on concept of collection and document. 

 

Database 

 

Database is a physical container for collections. Each database gets its own set of files on the file 

system. A single MongoDB server typically has multiple databases. 

 

Collection 

 

Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A collection 

exists within a single database. Collections do not enforce a schema. Documents within a collection 

can have different fields. Typically, all documents in a collection are of similar or related purpose. 

 

Document 

 

A document is a set of key-value pairs. Documents have dynamic schema. Dynamic schema means 

that documents in the same collection do not need to have the same set of fields or structure, and 

common fields in a collection's documents may hold different types of data. 

 

The following table shows the relationship of RDBMS terminology with MongoDB. 

 

RDBMS MongoDB 

Database Database 

Table Collection 

Tuple/Row Document 

column Field 

Table Join Embedded Documents 

 

 



Primary Key Primary Key (Default key _id provided by 

MongoDB itself) 

Database Server and Client 

mysqld/Oracle mongod 

mysql/sqlplus mongo 

 

Sample Document 

Following example shows the document structure of a blog site, which is simply a comma 

separated key value pair. 

 

 

 

{ 

 

_id: ObjectId(7df78ad8902c) 

title: 'MongoDB Overview', 

description: 'MongoDB is no sql database', 

by: 'tutorials point', 

url: 'http://www.tutorialspoint.com', 

tags: ['mongodb', 'database', 'NoSQL'], 

likes: 100, 

comments: [ 

 

{ 

 

user:'user1', 

 

message: 'My first comment', 

dateCreated: new Date(2011,1,20,2,15), 

like: 0 

 

}, 



{ 

user:'user2', 

message: 'My second comments', 

dateCreated: new Date(2011,1,25,7,45), 

like: 5 

} 

] 

 

} 

 

_id is a 12 bytes’ hexadecimal number which assures the uniqueness of every document. You can 

provide _id while inserting the document. If you don’t provide then MongoDB provides a unique 

id for every document. These 12 bytes first 4 bytes for the current timestamp, next 3 bytes for 

machine id, next 2 bytes for process id of MongoDB server and remaining 3 bytes are simple 

incremental VALUE. 

 

Any relational database has a typical schema design that shows number of tables and the 

relationship between these tables. While in MongoDB, there is no concept of relationship. 

 

Advantages of MongoDB over RDBMS 

 

 Schema less − MongoDB is a document database in which one collection holds different 

documents. Number of fields, content and size of the document can differ from one 

document to another. 

 Structure of a single object is clear. 

 No complex joins. 

 Deep query-ability. MongoDB supports dynamic queries on documents using a document- 

based query language that's nearly as powerful as SQL. 

 Tuning. 

 Ease of scale-out − MongoDB is easy to scale. 

 Conversion/mapping of application objects to database objects not needed. 



 Uses internal memory for storing the (windowed) working set, enabling faster access of 

data. 

 

Why Use MongoDB? 

 

 Document Oriented Storage − Data is stored in the form of JSON style documents. 

 Index on any attribute 

 Replication and high availability 

 Auto-Sharding 

 Rich queries 

 Fast in-place updates 

 Professional support by MongoDB 

Where to Use MongoDB? 

 Big Data 

 Content Management and Delivery 

 Mobile and Social Infrastructure 

 User Data Management 

 Data Hub 

MongoDB supports many datatypes. Some of them are − 

 String − This is the most commonly used datatype to store the data. String in MongoDB 

must be UTF-8 valid. 

 Integer − This type is used to store a numerical value. Integer can be 32 bit or 64 bit 

depending upon your server. 

 Boolean − This type is used to store a boolean (true/ false) value. 

 Double − This type is used to store floating point values. 

 Min/ Max keys − This type is used to compare a value against the lowest and highest 

BSON elements. 

 Arrays − This type is used to store arrays or list or multiple values into one key. 

 Timestamp − ctimestamp. This can be handy for recording when a document has been 



modified or added. 

 Object − This datatype is used for embedded documents. 

 Null − This type is used to store a Null value. 

 Symbol − This datatype is used identically to a string; however, it's generally reserved for 

languages that use a specific symbol type. 

 Date − This datatype is used to store the current date or time in UNIX time format. You 

can specify your own date time by creating object of Date and passing day, month, year 

into it. 

 Object ID − This datatype is used to store the document’s ID. 

 

 Binary data − This datatype is used to store binary data. 

 Code − This datatype is used to store JavaScript code into the document. 

 Regular expression − This datatype is used to store regular expression. 

 

The find() Method 

 

To query data from MongoDB collection, you need to use MongoDB's find() method. 

Syntax 

The basic syntax of find() method is as follows − 

>db.COLLECTION_NAME.find() 

find() method will display all the documents in a non-structured way. 

Example 

Assume we have created a collection named mycol as − 

 

And inserted 3 documents in it using the insert() method as shown below − 

> use sampleDB 

switched to db sampleDB 

> db.createCollection("mycol") 

{ "ok" : 1 } 

> 



 

 

Following method retrieves all the documents in the collection − 

 

 

The pretty() Method 

 

To display the results in a formatted way, you can use pretty() method. 

Syntax 

>db.COLLECTION_NAME.find().pretty() 

{ 

user:"user1", 

message: "My first comment", 

dateCreated: new Date(2013,11,10,2,35), 

like: 0 

} 

] 

} 

]) 

> db.mycol.insert([ 

{ 

title: "MongoDB Overview", 

description: "MongoDB is no SQL database", 

by: "tutorials point", 

url: "http://www.tutorialspoint.com", 

tags: ["mongodb", "database", "NoSQL"], 

likes: 100 

}, 

{ 

title: "NoSQL Database", 
description: "NoSQL database doesn't have tables", 

by: "tutorials point", 

url: "http://www.tutorialspoint.com", 

tags: ["mongodb", "database", "NoSQL"], 

likes: 20, 

comments: [ 

> db.mycol.find() 

{ "_id" : ObjectId("5dd4e2cc0821d3b44607534c"), "title" : "MongoDB Overview", "description" 

: "MongoDB is no SQL database", "by" : "tutorials point", "url" : "http://www.tutorialspoint.com", 

"tags" : [ "mongodb", "database", "NoSQL" ], "likes" : 100 } 

{ "_id" : ObjectId("5dd4e2cc0821d3b44607534d"), "title" : "NoSQL Database", "description" : 

"NoSQL database doesn't have tables", "by" : "tutorials point", "url" : 

"http://www.tutorialspoint.com", "tags" : [ "mongodb", "database", "NoSQL" ], "likes" : 20, 

"comments" : [ { "user" : "user1", "message" : "My first comment", "dateCreated" : 

ISODate("2013-12-09T21:05:00Z"), "like" : 0 } ] } 

> 

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/


Example 

Following example retrieves all the documents from the collection named mycol and arranges 

them in an easy-to-read format. 

 

The 

findOne() method 

 

Apart from the find() method, there is findOne() method, that returns only one document. 

Syntax 

>db.COLLECTIONNAME.findOne() 

 

Example 

} 

{ 

"_id" : ObjectId("5dd4e2cc0821d3b44607534d"), 
"title" : "NoSQL Database", 

"description" : "NoSQL database doesn't have tables", 

"by" : "tutorials point", 

"url" : "http://www.tutorialspoint.com", 

"tags" : [ 

"mongodb", 

"database", 

"NoSQL" 

], 

"likes" : 20, 

"comments" : [ 

{ 

"user" : "user1", 

"message" : "My first comment", 

"dateCreated" : ISODate("2013-12-09T21:05:00Z"), 

"like" : 0 

} 

] 

} 

> db.mycol.find().pretty() 

{ 

"_id" : ObjectId("5dd4e2cc0821d3b44607534c"), 

"title" : "MongoDB Overview", 

"description" : "MongoDB is no SQL database", 

"by" : "tutorials point", 

"url" : "http://www.tutorialspoint.com", 
"tags" : [ 

"mongodb", 

"database", 

"NoSQL" 

], 

"likes" : 100 

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/


 

Following example retrieves the document with title MongoDB Overview. 

 

RDBMS Where Clause Equivalents in MongoDB 

To query the document on the basis of some condition, you can use following operations. 

 

Operation Syntax Example RDBMS 

Equivalent 

Equality {<key>:{$eg;<value>}} db.mycol.find({"by":"tutorials 

point"}).pretty() 

where by = 

'tutorials 

point' 

Less Than {<key>:{$lt:<value>}} db.mycol.find({"likes":{$lt:50}}).pretty() where likes 

< 50 

Less Than 

Equals 

{<key>:{$lte:<value>}} db.mycol.find({"likes":{$lte:50}}).pretty() where likes 

<= 50 

Greater 

Than 

{<key>:{$gt:<value>}} db.mycol.find({"likes":{$gt:50}}).pretty() where likes 

> 50 

Greater 

Than 

Equals 

{<key>:{$gte:<value>}} db.mycol.find({"likes":{$gte:50}}).pretty() where likes 

>= 50 

} 

> db.mycol.findOne({title: "MongoDB Overview"}) 

{ 

"_id" : ObjectId("5dd6542170fb13eec3963bf0"), 

"title" : "MongoDB Overview", 

"description" : "MongoDB is no SQL database", 

"by" : "tutorials point", 

"url" : "http://www.tutorialspoint.com", 

"tags" : [ 

"mongodb", 

"database", 

"NoSQL" 

], 

"likes" : 100 

http://www.tutorialspoint.com/


Not 

Equals 

{<key>:{$ne:<value>}} db.mycol.find({"likes":{$ne:50}}).pretty() where likes 

!= 50 

Values in 

an array 

{<key>:{$in:[<value1>, 

<value2>,……<valueN>]}} 

db.mycol.find({"name":{$in:["Raj", 

"Ram", "Raghu"]}}).pretty() 

Where 

name 

matches 

any of the 

value in 

:["Raj", 

"Ram", 

"Raghu"] 

 

Values not 

in an array 

{<key>:{$nin:<value>}} db.mycol.find({"name":{$nin:["Ramu", 

"Raghav"]}}).pretty() 

Where 

name 

values is 

not in the 

array 

:["Ramu", 

"Raghav"] 

or, doesn’t 

exist at all 

 

AND in MongoDB 

Syntax 

To query documents based on the AND condition, you need to use $and keyword. Following is 

the basic syntax of AND − 

>db.mycol.find({ $and: [ {<key1>:<value1>}, { <key2>:<value2>} ] }) 

Example 

Following example will show all the tutorials written by 'tutorials point' and whose title is 

'MongoDB Overview'. 



 

For the above given example, equivalent where clause will be ' where by = 'tutorials point' AND 

title = 'MongoDB Overview' '. You can pass any number of key, value pairs in find clause. 

 

ORin MongoDB 

Syntax 

 

To query documents based on the OR condition, you need to use $or keyword. Following is the 

basic syntax of OR − 

>db.mycol.find( 

{ 

$or: [ 

{key1: value1}, {key2:value2} 

] 

} 

).pretty() 

Example 

Following example will show all the tutorials written by 'tutorials point' or whose title is 

'MongoDB Overview'. 

> db.mycol.find({$and:[{"by":"tutorials point"},{"title": "MongoDB Overview"}]}).pretty() 

{ 

"_id" : ObjectId("5dd4e2cc0821d3b44607534c"), 

"title" : "MongoDB Overview", 

"description" : "MongoDB is no SQL database", 
"by" : "tutorials point", 

"url" : "http://www.tutorialspoint.com", 
"tags" : [ 

"mongodb", 

"database", 

"NoSQL" 

], 

"likes" : 100 

} 

> 

http://www.tutorialspoint.com/


 

Using AND and OR Together 

Example 

The following example will show the documents that have likes greater than 10 and whose title 

is either 'MongoDB Overview' or by is 'tutorials point'. Equivalent SQL where clause is 'where 

likes>10 AND (by = 'tutorials point' OR title = 'MongoDB Overview')' 

 

NOR in MongoDB 

Syntax 

To query documents based on the NOT condition, you need to use $not keyword. Following is 

the basic syntax of NOT − 

>db.COLLECTION_NAME.find( 

{ 

 

 

} 

) 

 

Exam

ple 

$not: [ 

 

] 

>db.mycol.find({$or:[{"by":"tutorials point"},{"title": "MongoDB Overview"}]}).pretty() 

{ 

"_id": ObjectId(7df78ad8902c), 

"title": "MongoDB Overview", 

"description": "MongoDB is no sql database", 

"by": "tutorials point", 

"url": "http://www.tutorialspoint.com", 

"tags": ["mongodb", "database", "NoSQL"], 

"likes": "100" 

} 

> 

>db.mycol.find({"likes": {$gt:10}, $or: [{"by": "tutorials point"}, 

{"title": "MongoDB Overview"}]}).pretty() 

{ 

"_id": ObjectId(7df78ad8902c), 

"title": "MongoDB Overview", 

"description": "MongoDB is no sql database", 

"by": "tutorials point", 

"url": "http://www.tutorialspoint.com", 

"tags": ["mongodb", "database", "NoSQL"], 

"likes": "100" 

} 

> 

http://www.tutorialspoint.com/
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{key1: 

value1}, 

{key2:value2

}



 

Assume we have inserted 3 documents in the collection empDetails as shown below − 

 

Following example will retrieve the document(s) whose first name is not "Radhika" and last name 

is not "Christopher" 

 

db.empDetails.insertMany( 

[ 

{ 

First_Name: "Radhika", 

Last_Name: "Sharma", 

Age: "26", 

e_mail: "radhika_sharma.123@gmail.com", 

phone: "9000012345" 

}, 
{ 

First_Name: "Rachel", 

Last_Name: "Christopher", 

Age: "27", 

e_mail: "Rachel_Christopher.123@gmail.com", 

phone: "9000054321" 

}, 

{ 

First_Name: "Fathima", 

Last_Name: "Sheik", 

Age: "24", 

e_mail: "Fathima_Sheik.123@gmail.com", 

phone: "9000054321" 

} 

] 

) 

> db.empDetails.find( 

{ 

mailto:radhika_sharma.123@gmail.com
mailto:Rachel_Christopher.123@gmail.com
mailto:Fathima_Sheik.123@gmail.com


 

 

NOT in MongoDB 

Syntax 

To query documents based on the NOT condition, you need to use $not keyword following is the 

basic syntax of NOT − 

>db.COLLECTION_NAME.find( 

{ 

 

 

} 

).pretty() 

Example 

$NOT: [ 

 

] 

 

{key1: value1}, {key2:value2} 

Following example will retrieve the document(s) whose age is not greater than 25 

 

 

 

$nor:[ 

40 

{"First_Name": "Radhika"}, 

{"Last_Name": "Christopher"} 

] 

} 

).pretty() 

{ 

"_id" : ObjectId("5dd631f270fb13eec3963bef"), 

"First_Name" : "Fathima", 

"Last_Name" : "Sheik", 

"Age" : "24", 

"e_mail" : "Fathima_Sheik.123@gmail.com", 
"phone" : "9000054321" 

} 

> db.empDetails.find( { "Age": { $not: { $gt: "25" } } } ) 

{ 

"_id" : ObjectId("5dd6636870fb13eec3963bf7"), 

"First_Name" : "Fathima", 

"Last_Name" : "Sheik", 

"Age" : "24", 

"e_mail" : "Fathima_Sheik.123@gmail.com", 

"phone" : "9000054321" 

} 

mailto:Fathima_Sheik.123@gmail.com
mailto:Fathima_Sheik.123@gmail.com


MapReduce: 

 

MapReduce addresses the challenges of distributed programming by providing an abstraction 

that isolates the developer from system-level details (e.g., locking of data structures, data 

starvation issues in the processing pipeline, etc.). The programming model specifies simple and 

well-defined interfaces between a small number of components, and therefore is easy for the 

programmer to reason about. MapReduce maintains a separation of what computations are to 

be performed and how those computations are actually carried out on a cluster of machines.  

The first is under the control of the programmer, while the second is exclusively the 

responsibility of the execution framework or “runtime”. The advantage is that the execution 

framework only needs to be designed once and verified for correctness—thereafter, as long 

as the developer expresses computations in the programming model, code is guaranteed to 

behave as expected. The upshot is that the developer is freed from having to worry about 

system-level details (e.g., no more debugging race conditions and addressing lock contention) 

and can instead focus on algorithm or application design. 

 

MapReduce represents the first widely-adopted step away from the von Neumann model that 

has served as the foundation of computer science over the last half plus century. Valiant called 

this a bridging model, a conceptual bridge between the physical implementation of a machine 

and the software that is to be executed on that machine. Until recently, the von Neumann model 

has served us well: Hardware designers focused on efficient implementations of the von 

Neumann model and didn’t have to think much about the actual software that would run on 

the machines.  

Similarly, the software industry developed software targeted at the model without worrying 

about the hardware details. The result was extraordinary growth: chip designers churned out 

successive generations of increasingly powerful processors, and software engineers were able 

to develop applications in high-level languages that exploited those processors. 

 

MapReduce can be viewed as the first breakthrough in the quest for new abstractions that allow 

us to organize computations, not over individual machines, but over entire clusters. As Barroso 

puts it, the datacenter is the computer. MapReduce is certainly not the first model of parallel 

computation that has been proposed. The most prevalent model in theoretical computer 

science, which dates back several decades, is the PRAM. MAPPERS AND REDUCERS Key-

value pairs form the basic data structure in MapReduce. Keys and values may be primitives 

such as integers, floating point values, strings, and raw bytes, or they may be arbitrarily 



complex structures (lists, tuples, associative arrays, etc.). Programmers typically need to define 

their own custom data types, although a number of libraries such as Protocol Buffers,5 Thrift,6 

and Avro7 simplify the task. Part of the design of MapReduce algorithms involves imposing the 

key-value structure on arbitrary datasets. For a collection of web pages, keys may be URLs and 

values may be the actual HTML content. For a graph, keys may represent node ids and values 

may contain the adjacency lists of those nodes (see Chapter 5 for more details). In some 

algorithms, input keys are not particularly 

 

meaningful and are simply ignored during processing, while in other cases input keys are used 

to uniquely identify a datum (such as a record id). In Chapter 3, we discuss the role of complex 

keys and values in the design of various algorithms. In MapReduce, the programmer defines a 

mapper and a reducer with the following signatures: map: (k1, v1) → [(k2, v2)] reduce: (k2, 

[v2]) → [(k3, v3)] The convention [. . .] is used throughout this book to denote a list.  

The input to a MapReduce job starts as data stored on the underlying distributed file system 

(see Section 2.5). The mapper is applied to every input key-value pair (split across an arbitrary 

number of files) to generate an arbitrary number of intermediate key-value pairs. The reducer 

is applied to all values associated with the same intermediate key to generate output key-value 

pairs.8 Implicit between the map and reduce phases is a distributed “group by” operation on 

intermediate keys. Intermediate data arrive at each reducer in order, sorted by the key. 

However, no ordering relationship is guaranteed for keys across different reducers. Output key-

value pairs from each reducer are written persistently back onto the distributed file system 

(whereas intermediate key-value pairs are transient and not preserved). The output ends up in 

r files on the distributed file system, where r is the number of reducers. For the most part, there 

is no need to consolidate reducer output, since the r files often serve as input to yet another 

MapReduce job. Figure 2.2 illustrates this two-stage processing structure. A simple word count 

algorithm in MapReduce is shown in Figure 2.3. This algorithm counts the number of 



occurrences of every word in a text collection, which may be the first step in, for example, 

building a unigram language model (i.e., probability  

 

MAPREDUCE BASICS 

 

Distribution over words in a collection). Input key-values pairs take the form of (docid, doc) 

pairs stored on the distributed file system, where the former is a unique identifier for the 

document, and the latter is the text of the document itself. The mapper takes an input key-value 

pair, tokenizes the document, and emits an intermediate key-value pair for every word: the 

word itself serves as the key, and the integer one serves as the value (denoting that we’ve seen 

the word once).  

The MapReduce execution framework guarantees that all values associated with the same 

key are brought together in the reducer. Therefore, in our word count algorithm, we simply 

need to sum up all counts (ones) associated with each word. The reducer does exactly this, and 

emits final keyvalue pairs with the word as the key, and the count as the value. Final output is 

written to the distributed file system, one file per reducer. Words within each file will be sorted 



by alphabetical order, and each file will contain roughly the same number of words. The 

partitioner, which we discuss later in Section 2.4, controls the assignment of words to reducers. 

The output can be examined by the programmer or used as input to another MapReduce 

program. 

 

There are some differences between the Hadoop implementation of MapReduce and Google’s 

implementation.9 In Hadoop, the reducer is presented with a key and an iterator over all values 

associated with the particular key. The values are arbitrarily ordered. Google’s implementation 

allows the programmer to specify a secondary sort key for ordering the values (if desired)—in 

which case values associated with each key would be presented to the developer’s reduce code 

in sorted order. Later in Section 3.4 we discuss how to overcome this limitation in Hadoop to 

perform secondary sorting. Another difference: in Google’s implementation the programmer is 

not allowed to change the key in the reducer. That is, the reducer output key must be exactly 

the same as the reducer input key. In Hadoop, there is no such restriction, and the reducer can 

emit an arbitrary number of output key-value pairs (with different keys). 

 

To provide a bit more implementation detail: pseudo-code provided in this book roughly 

mirrors how MapReduce programs are written in Hadoop. Mappers and reducers are objects 

that implement the Map and Reduce methods, respectively. In Hadoop, a mapper object is 

initialized for each map task (associated with a particular sequence of key-value pairs called 

an input split) and the Map method is called on each key-value pair by the execution 

framework. In configuring a MapReduce job, the programmer provides a hint on the number 

of map tasks to run, but the execution framework (see next section) makes the final 

determination based on the physical layout of the data The situation is similar for the reduce 

phase: a reducer object is initialized for each reduce task, and the Reduce method is called once 

per intermediate key. In contrast with the number of map tasks, the programmer can precisely 

specify the number of reduce tasks.  

Mappers and reducers can express arbitrary computations over their inputs. However, one must generally be 

careful about use of external resources since multiple mappers or reducers may be contending for those 

resources. For example, it may be unwise for a mapper to query an external SQL database, since that would 

introduce a scalability bottleneck on the number of map tasks that could be run in parallel (since they might 

all be simultaneously querying the database).10 In general, mappers can emit an arbitrary number of 

intermediate key-value pairs, and they need not be of the same type as the input key-value pairs. Similarly, 

reducers can emit an arbitrary number of final key-value pairs, and they can differ in type from the 

intermediate key-value pairs. Although not permitted in functional programming, mappers and reducers can 



have side effects. This is a powerful and useful feature: Such algorithms can be understood as having side 

effects that only change state that is internal to the mapper or reducer. While the correctness of such algorithms 

may be more difficult to guarantee (since the function’s behavior depends not only on the current input but 

on previous inputs), most potential synchronization problems are avoided since internal state is private only 

to individual mappers and reducers.  

It may be useful for mappers or reducers to have external side effects, such as writing files to 

the distributed file system. Since many mappers and reducers are run in parallel, and the 

distributed file system is a shared global resource, special care must be taken to ensure that such 

operations avoid synchronization conflicts. One strategy is to write a temporary file that is 

renamed upon successful completion of the mapper or reducer. 

 

In addition to the “canonical” MapReduce processing flow, other variations are also possible. 

MapReduce programs can contain no reducers, in which case mapper output is directly written 

to disk (one file per mapper). For embarrassingly parallel problems, e.g., parse a large text 

collection or independently analyze a large number of images, this would be a common pattern. 

The converse—a MapReduce program with no mappers—is not possible, although in some 

cases it is useful for the mapper to implement the identity function and simply pass input key-

value pairs to the reducers. This has the effect of sorting and regrouping the input for reduce-

side processing. Similarly, in some cases it is useful for the reducer to implement the identity 

function, in which case the program simply sorts and groups mapper output. Finally, running 

identity mappers and reducers has the effect of regrouping and resorting the input data (which 

is sometimes useful). 

 

Although in the most common case, input to a MapReduce job comes from data stored on 

the distributed file system and output is written back to the distributed file system, any other 

system that satisfies the proper abstractions can serve as a data source or sink. With Google’s 

MapReduce implementation, BigTable,a sparse, distributed, persistent multidimensional 

sorted map, is frequently used as a source of input and as a store of MapReduce output. HBase 

is an open-source BigTable clone and has similar capabilities. Also, Hadoop has been 

integrated with existing MPP (massively parallel processing) relational databases, which 

allows a programmer to write MapReduce jobs over database rows and dump output into a 

new database table. Finally, in some 

 

 

 



cases MapReduce jobs may not consume any input at all (e.g., computing π) or may only consume 

a small amount of data (e.g., input parameters to many instances of processor intensive simulations 

running in parallel). 

 

PARTITIONERS AND COMBINERS 

 

We have thus far presented a simplified view of MapReduce. There are two additional elements 

that complete the programming model: partitioners and combiners. Partitioners are responsible for 

dividing up the intermediate key space and assigning intermediate key-value pairs to reducers. In 

other words, the partitioner specifies the task to which an intermediate key-value pair must be 

copied. Within each reducer, keys are processed in sorted order (which is how the “group by” is 

implemented). The simplest partitioner involves computing the hash value of the key and then 

taking the mod of that value with the number of reducers. This assigns approximately the same 

number of keys to each reducer (dependent on the quality of the hash function). Note, however, 

that the partitioner only considers the key and ignores the value—therefore, a roughly-even 

partitioning of the key space may nevertheless yield large differences in the number of key-values 

pairs sent to each reducer (since different keys may have different numbers of associated values). 

This imbalance in the amount of data associated with each key is relatively common in many text 

processing applications due to the Zipfian distribution of word occurrences. 

 

Combiners are an optimization in MapReduce that allow for local aggregation before the shuffle 

and sort phase. Furthermore, all these key-value pairs need to be copied across the network, and 

so the amount of intermediate data will be larger than the input collection itself. This is clearly 

inefficient. One solution is to perform local aggregation on the output of each mapper, i.e., to 

compute a local count for a word over all the documents processed by the mapper. With this 

modification (assuming the maximum amount of local aggregation possible), the number of 

intermediate key-value pairs will be at most the number of unique words in the collection times the 

number of mappers (and typically far smaller because each mapper may not encounter every word). 

 

smaller because each mapper may not encounter every word). The combiner in MapReduce 

supports such an optimization. One can think of combiners as “mini-reducers” that take place on 

the output of the mappers, prior to the shuffle and sort phase. Each combiner operates in isolation 

and therefore does not have access to intermediate output from other mappers. The combiner is 

provided keys and values associated with each key (the same types as the mapper output keys and 

values). Critically, one cannot assume that a combiner will have the opportunity to process all 



values associated with the same key. The combiner can emit any number of key-value pairs, but 

the keys and values must be of the same type as the mapper output (same as the reducer input).12 

In cases where an operation is both associative and commutative (e.g., addition or multiplication), 

reducers can directly serve as combiners. In general, however, reducers and combiners are not 

interchangeable. 

 

In many cases, proper use of combiners can spell the difference between an impractical algorithm 

and an efficient algorithm. This topic will be discussed in Section 3.1, which focuses on various 

techniques for local aggregation. It suffices to say for now that a combiner can significantly reduce 

the amount of data that needs to be copied over the network, resulting in much faster algorithms. 

The complete MapReduce model is shown in Figure 2.4. Output of the mappers are processed by 

the combiners, which perform local aggregation to cut down on the number of intermediate key- 

value pairs. The partitioner determines which reducer will be responsible for processing a 

particular key, and the execution framework uses this information to copy the data to the right 

location during the shuffle and sort phase.13 Therefore, a complete MapReduce job consists of 

code for the mapper, reducer, combiner, and partitioner, along with job configuration parameters. 

The execution framework handles everything else. 

 

 

 

 

 



 

 

SECONDARY SORTING 

 

MapReduce sorts intermediate key-value pairs by the keys during the shuffle and sort phase, which 

is very convenient if computations inside the reducer rely on sort order (e.g., the order inversion 

design pattern described in the previous section). However, what if in addition to sorting by key, 

we also need to sort by value? Google’s MapReduce implementation provides built-in  

functionality for (optional) secondary sorting, which guarantees that values arrive in sorted order. 

Hadoop, unfortunately, does not have this capability built in. 

 

Consider the example of sensor data from a scientific experiment: there are m sensors each taking 

readings on continuous basis, where m is potentially a large number. A dump of the sensor data 

might look something like the following, where rx after each timestamp represents the actual 

sensor readings (unimportant for this discussion, but may be a series of values, one or more 

complex records, or even raw bytes of images). 



 

(t1, m1, r80521) 

(t1, m2, r14209) 

(t1, m3, r76042) ... 

(t2, m1, r21823) 

(t2, m2, r66508) 

(t2, m3, r98347) 

Suppose we wish to reconstruct the activity at each individual sensor over time. A MapReduce 

program to accomplish this might map over the raw data and emit the sensor id as the intermediate 

key, with the rest of each record as the value: 

 

m1 → (t1, r80521) 

 

This would bring all readings from the same sensor together in the reducer. However, since 

MapReduce makes no guarantees about the ordering of values associated with the same key, the 

sensor readings will not likely be in temporal order. The most obvious solution is to buffer all the 

readings in memory and then sort by timestamp before additional processing. However, it should 

be apparent by now that any in-memory buffering of data introduces a potential scalability 

bottleneck. What if we are working with a high frequency sensor or sensor readings over a long 

period of time? What if the sensor readings themselves are large complex objects? This approach 

may not scale in these cases—the reducer would run out of memory trying to buffer all values 

associated with the same key. 

 

This is a common problem, since in many applications we wish to first group together data one 

way (e.g., by sensor id), and then sort within the groupings another way (e.g., by time). Fortunately, 

there is a general purpose solution, which we call the “value-to-key conversion” design pattern. 

The basic idea is to move part of the value into the intermediate key to form a composite key, and 

let the MapReduce execution framework handle the sorting. In the above example, instead of 

emitting the sensor id as the key, we would emit the sensor id and the timestamp as a composite 

key: (m1, t1) → (r80521) 

 

The sensor reading itself now occupies the value. We must define the intermediate key sort order 

to first sort by the sensor id (the left element in the pair) and then by the timestamp (the right 

element in the pair). We must also implement a custom partitioner so that all pairs associated with 

the same sensor are shuffled to the same reducer. Properly orchestrated, the key-value pairs will 



be presented to the reducer in the correct sorted order: (m1, t1) → [(r80521)] (m1, t2) → [(r21823)] 

(m1, t3) → [(r146925)] . . . 

 

However, note that sensor readings are now split across multiple keys. The reducer will need to 

preserve state and keep track of when readings associated with the current sensor end and the next 

sensor begin.9 The basic tradeoff between the two approaches discussed above (buffer and 

inmemory sort vs. value-to-key conversion) is where sorting is performed. One can explicitly 

implement secondary sorting in the reducer, which is likely to be faster but suffers from a 

scalability bottleneck.10 With value-to-key conversion, sorting is offloaded to the MapReduce 

execution framework. Note that this approach can be arbitrarily extended to tertiary, quaternary, 

etc. sorting. This pattern results in many more keys for the framework to sort, but distributed sorting 

is a task that the MapReduce runtime excels at since it lies at the heart of the programming model. 

 

INDEX COMPRESSION 

 

We return to the question of how postings are actually compressed and stored on disk. This chapter 

devotes a substantial amount of space to this topic because index compression is one of the main 

differences between a “toy” indexer and one that works on real-world collections. Otherwise, 

MapReduce inverted indexing algorithms are pretty straightforward. 

 

Let us consider the canonical case where each posting consists of a document id and the term 

frequency. A na¨ıve implementation might represent the first as a 32-bit integer9 and the second 

as a 16-bit integer. Thus, a postings list might be encoded as follows: [(5, 2),(7, 3),(12, 1),(49, 

1),(51, 2), . . .] 

 

where each posting is represented by a pair in parentheses. Note that all brackets, parentheses, and 

commas are only included to enhance readability; in reality the postings would be represented as 

a long stream of integers. This na¨ıve implementation would require six bytes per posting. Using 

this scheme, the entire inverted index would be about as large as the collection itself. Fortunately, 

we can do significantly better. The first trick is to encode differences between document ids as 

opposed to the document ids themselves. Since the postings are sorted by document ids, the 

differences (called d-gaps) must be positive integers greater than zero. The above postings list, 

represented with d-gaps, would be: [(5, 2),(2, 3),(5, 1),(37, 1),(2, 2) 

 

Of course, we must actually encode the first document id. We haven’t lost any information, since 



the original document ids can be easily reconstructed from the d-gaps. However, it’s not obvious 

that we’ve reduced the space requirements either, since the largest possible d-gap is one less than 

the number of documents in the collection. This is where the second trick comes in, which is to 

represent the d-gaps in a way such that it takes less space for smaller numbers. Similarly, we want 

to apply the same techniques to compress the term frequencies, since for the most part they are 

also small values. But to understand how this is done, we need to take a slight detour into 

compression techniques, particularly for coding integers. 

 

Compression, in general, can be characterized as either lossless or lossy: it’s fairly obvious that 

loseless compression is required in this context. To start, it is important to understand that all 

compression techniques represent a time–space tradeoff. That is, we reduce the amount of space 

on disk necessary to store data, but at the cost of extra processor cycles that must be spent coding 

and decoding data. Therefore, it is possible that compression reduces size but also slows 

processing. However, if the two factors are properly balanced (i.e., decoding speed can keep up 

with disk bandwidth), we can achieve the best of both worlds: smaller and faster. 

 

POSTINGS COMPRESSION 

 

Having completed our slight detour into integer compression techniques, we can now return to the 

scalable inverted indexing algorithm shown in Figure 4.4 and discuss how postings lists can be 

properly compressed. As we can see from the previous section, there is a wide range of choices 

that represent different tradeoffs between compression ratio and decoding speed. Actual 

performance also depends on characteristics of the collection, which, among other factors, 

determine the distribution of d-gaps. B¨uttcher et al. [30] recently compared the performance of 

various compression techniques on coding document ids. In terms of the amount of compression 

that can be obtained (measured in bits per docid), Golomb and Rice codes performed the best, 

followed by γ codes, Simple-9, varInt, and group varInt (the least space efficient). In terms of raw 

decoding speed, the order was almost the reverse: group varInt was the fastest, followed by 

varInt.14 Simple-9 was substantially slower, and the bit-aligned codes were even slower than that. 

Within the bit-aligned codes, Rice codes were the fastest, followed by γ, with Golomb codes being 

the slowest (about ten times slower than group varInt). 

 

Let us discuss what modifications are necessary to our inverted indexing algorithm if we were to 

adopt Golomb compression for d-gaps and represent term frequencies with γ codes. Note that this 

represents a space-efficient encoding, at the cost of slower decoding compared to alternatives. 



Whether or not this is actually a worthwhile tradeoff in practice is not important here: use of 

Golomb codes serves a pedagogical purpose, to illustrate how one might set compression 

parameters. 

 

Coding term frequencies with γ codes is easy since they are parameterless. Compressing d-gaps 

with Golomb codes, however, is a bit tricky, since two parameters are required: the size of the 

document collection and the number of postings for a particular postings list (i.e., the document 

frequency, or df). The first is easy to obtain and can be passed into the reducer as a constant. The 

df of a term, however, is not known until all the postings have been processed—and unfortunately, 

 

the parameter must be known before any posting is coded. At first glance, this seems like a 

chicken-and-egg problem. A two-pass solution that involves first buffering the postings (in 

memory) would suffer from the memory bottleneck we’ve been trying to avoid in the first place. 

 

To get around this problem, we need to somehow inform the reducer of a term’s df before any of 

its postings arrive. This can be solved with the order inversion design pattern introduced in Section 

3.3 to compute relative frequencies. The solution is to have the mapper emit special keys of the 

form ht, ∗i to communicate partial document frequencies. That is, inside the mapper, in addition 

to emitting intermediate key-value pairs of the following form: 

 

(tuple ht, docidi,tf f) 

 

we also emit special intermediate key-value pairs like this: 

 

(tuple ht, ∗i, df e) 

 

to keep track of document frequencies associated with each term. In practice, we can accomplish 

this by applying the in-mapper combining design pattern (see Section 3.1). The mapper holds an 

in-memory associative array that keeps track of how many documents a term has been observed 

in (i.e., the local document frequency of the term for the subset of documents processed by the 

mapper). Once the mapper has processed all input records, special keys of the form ht, ∗i are 

emitted with the partial df as the value. 

 

To ensure that these special keys arrive first, we define the sort order of the tuple so that the special 

symbol ∗ precedes all documents (part of the order inversion design pattern). Thus, for each term, 



the reducer will first encounter the ht, ∗i key, associated with a list of values representing partial 

df values originating from each mapper. Summing all these partial contributions will yield the 

term’s df, which can then be used to set the Golomb compression parameter b. This allows the 

postings to be incrementally compressed as they are encountered in the reducer—memory 

bottlenecks are eliminated since we do not need to buffer postings in memory. 

 

Once again, the order inversion design pattern comes to the rescue. Recall that the pattern is useful 

when a reducer needs to access the result of a computation (e.g., an aggregate statistic) before it 

encounters the data necessary to produce that computation. For computing relative frequencies, 

that bit of information was the marginal. In this case, it’s the document frequency. 

 

PARALLEL BREADTH-FIRST SEARCH 

 

One of the most common and well-studied problems in graph theory is the single-source shortest 

path problem, where the task is to find shortest paths from a source node to all other nodes in the 

graph (or alternatively, edges can be associated with costs or weights, in which case the task is to 

compute lowest-cost or lowest-weight paths). Such problems are a staple in undergraduate 

algorithm courses, where students are taught the solution using Dijkstra’s algorithm. However, 

this famous algorithm assumes sequential processing—how would we solve this problem in 

parallel, and more specifically, with MapReduce? 

 

Dijkstra(G, w, s) 

2: d[s] ← 0 

3: for all vertex v ∈ V do 

4: d[v] ← ∞ 

5: Q ← {V } 

6: while Q 6= ∅ do 

7: u ← ExtractMin(Q) 

8: for all vertex v ∈ u.AdjacencyList do 

9: if d[v] > d[u] + w(u, v) then 

10: d[v] ← d[u] + w(u, v) 

 

Pseudo-code for Dijkstra’s algorithm, which is based on maintaining a global priority queue of 

nodes with priorities equal to their distances from the source node. At each iteration, the algorithm 

expands the node with the shortest distance and updates distances to all reachable nodes. As a 



refresher and also to serve as a point of comparison, Dijkstra’s algorithm is shown in Figure 5.2, 

adapted from Cormen, Leiserson, and Rivest’s classic algorithms textbook [41] (often simply 

known as CLR). The input to the algorithm is a directed, connected graph G = (V, E) represented 

with adjacency lists, w containing edge distances such that w(u, v) ≥ 0, and the source node s. The 

algorithm begins by first setting distances to all vertices d[v], v ∈ V to ∞, except for the source 

node, whose distance to itself is zero.  

The algorithm maintains Q, a global priority queue of vertices with priorities equal to their 

distance values d Dijkstra’s algorithm operates by iteratively selecting the node with the lowest 

current distance from the priority queue (initially, this is the source node). At each iteration, the 

algorithm “expands” that node by traversing the adjacency list of the selected node to see if any of 

those nodes can be reached with a path of a shorter distance. The algorithm terminates when the 

priority queue Q is empty, or equivalently, when all nodes have been considered. Note that the 

algorithm as presented in Figure 5.2 only computes the shortest distances. The actual paths can be 

recovered by storing “backpointers” for every node indicating a fragment of the shortest path. 

A sample trace of the algorithm running on a simple graph is shown in Figure 5.3 (example also 

adapted from CLR). We start out in (a) with n1 having a distance of zero (since it’s the source) and 

all other nodes having a distance of ∞. In the first iteration (a), n1 is selected as the node to expand 

(indicated by the thicker border). After the expansion, we see in (b) that n2 and n3 can be reached 

at a distance of 10 and 5, respectively. Also, we see in (b) that n3 is the next node selected for 

expansion. Nodes we have already considered for expansion are shown in black. Expanding n3, 

we see in (c) that the distance to n2 has decreased because we’ve found a shorter path. The nodes 

that will be expanded next, in order, are n5, n2, and n4. The algorithm terminates with the end state 

shown in (f), where we’ve discovered the shortest distance to all nodes. 

 



 

The key to Dijkstra’s algorithm is the priority queue that maintains a globallysorted list of nodes 

by current distance. This is not possible in MapReduce, as the programming model does not provide 

a mechanism for exchanging global data. Instead, we adopt a brute force approach known as 

parallel breadth-first search. First, as a simplification let us assume that all edges have unit distance 

(modeling, for example, hyperlinks on the web). This makes the algorithm easier to understand, 

but we’ll relax this restriction later. 

The intuition behind the algorithm is this: the distance of all nodes connected directly to the source 

node is one; the distance of all nodes directly connected to those is two; and so on. Imagine water 

rippling away from a rock dropped into a pond— that’s a good image of how parallel breadth-first 

search works. However, what if there are multiple paths to the same node? Suppose we wish to 

compute the shortest distance to node n. The shortest path must go through one of the nodes in M 

that contains an outgoing edge to n: we need to examine all m ∈ M to find ms, the node with the 

shortest distance. The shortest distance to n is the distance to ms plus one. 

 

Pseudo-code for the implementation of the parallel breadth-first search algorithm is provided in 

Figure 5.4. As with Dijkstra’s algorithm, we assume a connected, directed graph represented as 



adjacency lists. Distance to each node is directly stored alongside the adjacency list of that node, 

and initialized to ∞ for all nodes except for the source node. In the pseudo-code, we use n to denote 

the node id (an integer) and N to denote the node’s corresponding data structure (adjacency list and 

current distance). The algorithm works by mapping over all nodes and emitting a key-value pair 

for each neighbor on the node’s adjacency list. The key contains the node id of the neighbor, and 

the value is the current distance to the node plus one. This says: if we can reach node n with a 

distance d, then we must be able to reach all the nodes that are connected to n with distance d + 1. 

 

After shuffle and sort, reducers will receive keys corresponding to the destination node ids and 

distances corresponding to all paths leading to that node. The reducer will select the shortest of 

these distances and then update the distance in the node data structure. 

 

h iteration corresponds to a MapReduce job. The first time we run the algorithm, we “discover” all 

nodes that are connected to the source. The second iteration, we discover all nodes connected to 

those, and so on. Each iteration of the algorithm expands the “search frontier” by one hop, and, 

eventually, all nodes will be discovered with their shortest distances (assuming a fully-connected 

graph). Before we discuss termination of the algorithm, there is one more detail required to make 

the parallel breadth-first search algorithm work. We need to “pass along” the graph structure from 

one iteration to the next. This is accomplished by emitting the node data structure itself, with the 

node id as a key (Figure 5.4, line 4 in the mapper). In the reducer, we must distinguish the node 

data structure from distance values (Figure 5.4, lines 5–6 in the reducer), and update the minimum 

distance in the node data structure before emitting it as the final value. The final output is now 

ready to serve as input to the next iteration. 

 

So how many iterations are necessary to compute the shortest distance to all nodes? The answer is 

the diameter of the graph, or the greatest distance between any pair of nodes. This number is 

surprisingly small for many real-world problems: the saying “six degrees of separation” suggests 

that everyone on the planet is connected to everyone else by at most six steps (the people a person 

knows are one step away, people that they know are two steps away, etc.). If this is indeed true, 

then parallel breadthfirst search on the global social network would take at most six MapReduce 

iterations. 

class Mapper 

2: method Map(nid n, node N) 3: 

d ← N.Distance 

4: Emit(nid n, N) . Pass along graph structure 



5: for all nodeid m ∈ N.AdjacencyList do 

6: Emit(nid m, d + 1) . Emit distances to reachable nodes 

1: class Reducer 

2: method Reduce(nid m, [d1, d2, . . .]) 

3: dmin ← ∞ 

4: M ← ∅ 

5: for all d ∈ counts [d1, d2, . . .] do 

6: if IsNode(d) then 

7: M ← d . Recover graph structure 

8: else if d < dmin then . Look for shorter distance 

9: dmin ← d 

10: M.Distance ← dmin . Update shortest distance 

11: Emit(nid m, node M) 

 

 

 

 

Figure 5.4: Pseudo-code for parallel breath-first search in MapReduce: the mappers emit distances 

to reachable nodes, while the reducers select the minimum of those distances for each destination 

node. Each iteration (one MapReduce job) of the algorithm expands the “search frontier” by one 

hop. 

For more serious academic studies of “small world” phenomena in networks, we refer the reader 

to a number of publications [61, 62, 152, 2]. In practical terms, we iterate the algorithm until there 

are no more node distances that are ∞. Since the graph is connected, all nodes are reachable, and 

since all edge distances are one, all discovered nodes are guaranteed to have the shortest distances 

(i.e., there is not a shorter path that goes through a node that hasn’t been discovered). 

The actual checking of the termination condition must occur outside of MapReduce. Typically, 

execution of an iterative MapReduce algorithm requires a nonMapReduce “driver” program, 

which submits a MapReduce job to iterate the algorithm, checks to see if a termination condition 

has been met, and if not, repeats. Hadoop provides a lightweight API for constructs called 

“counters”, which, as the name suggests, can be used for counting events that occur during 

execution, e.g., number of corrupt records, number of times a certain condition is met, or anything 

that the programmer desires. Counters can be defined to count the number of nodes that have 

distances of ∞: at the end of the job, the driver program can access the final counter value and 

check to see if another iteration is necessary. 



 

Finally, as with Dijkstra’s algorithm in the form presented earlier, the parallel breadth-first search 

algorithm only finds the shortest distances, not the actual shortest paths. However, the path can be 

straightforwardly recovered. Storing “backpointers” at each node, as with Dijkstra’s algorithm, 

will work, but may not be efficient since the graph needs to be traversed again to reconstruct the 

path segments. A simpler approach is to emit paths along with distances in the mapper, so that each 

node will have its shortest path easily accessible at all times. The additional space requirements 

for shuffling these data from mappers to reducers are relatively modest, since for the most part paths 

(i.e., sequence of node ids) are relatively short. 

Up until now, we have been assuming that all edges are unit distance. Let us relax that restriction 

and see what changes are required in the parallel breadth-first search algorithm. The adjacency 

lists, which were previously lists of node ids, must now encode the edge distances as well.  

 

The graph structure is represented with adjacency lists, which is part of some larger node 

data structure that may contain additional information (variables to store intermediate output, 

features of the nodes). In many cases, features are attached to edges as well (e.g., edge weights). 

The graph structure is represented with adjacency lists, which is part of some larger node 

data structure that may contain additional information (variables to store intermediate output, 

features of the nodes). In many cases, features are attached to edges as well (e.g., edge weights). 

In addition to computations, the graph itself is also passed from the mapper to the reducer. 

In the reducer, the data structure corresponding to each node is updated and written back to disk. 

Graph algorithms in MapReduce are generally iterative, where the output of the previous 

iteration serves as input to the next iteration. The process is controlled by a non-MapReduce driver 

program that checks for termination. 

For parallel breadth-first search, the mapper computation is the current distance plus edge 

distance (emitting distances to neighbors), while the reducer computation is the Min function 



(selecting the shortest path). As we will see in the next section, the Map Reduce algorithm for 

PageRank works in much the same way 


